BERTIN ENGINEERING

STORMWATER DRAINAGE ANALYSIS

RESIDENTIAL DEVELOPMENT BLOCK 4201.01, LOT 33.03 GROVERS MILL ROAD & MALL ACCESS ROAD TOWNSHIP OF LAWRENCE, MERCER COUNTY, NEW JERSEY BE# 21-210

DATE PREPARED: DATE REVISED: OCTOBER 12, 2023 MARCH 19, 2024

ERIC M. HOUGH, P.E. N.J.P.E. LICENSE NO. 51893

\\file01\BE Job Files\2021\21-210 Lawrence\Design\02-Civil\Reports\21-210-dr.docx

66 GLEN AVENUE • GLEN ROCK, NJ 07452 • P 201.670.6688 F 201.670.9788

BERTIN ENGINEERING

STORMWATER DRAINAGE ANALYSIS

TOWNHOUSE DEVELOPMENT BLOCK 4201.01, LOT 33.03 **GROVERS MILL ROAD & MALL ACCESS ROAD** TOWNSHIP OF LAWRENCE, MERCER COUNTY, NEW JERSEY BE# 21-210

TABLE OF CONTENTS

PAGE

Ι.	PR	OJECT SUMMARY	
II.	STO	ORMWATER DRAINAGE CALCULATIONS	
	1.	DESIGN CRITERIA	1
	2.	EXISTING RUNOFF	1
	3.	PROPOSED RUNOFF	1
	4.	PROPOSED ROUTING – DETAINED 1	2
	5.	PROPOSED ROUTING – DETAINED 2	3
	6.	PROPOSED RUNOFF – BYPASS	4
	7.	PROPOSED RUNOFF – COMBINED (TOTAL)	4
	8.	EXISTING VS. PROPOSED RUNOFF	5
	9.	INFILTRATION BASIN DESIGN FOR ROOF RUNOFF	5
	10.	WATER QUALITY DESIGN	5
	11.	STORMWATER RECHARGE REQUIREMENT	6
	12.	STORM SEWER ANALYSIS TABLE	7
	13.	PREFORMED SCOUR HOLE DESIGN	7
	14.	GROUNDWATER MOUNDING ANALYSIS	9
ATTAC	СНМ	ENTS:	
	CUI	LTEC RECHARGER 360HD DESIGN CALCULATOR WORKSHEET	
	ANI	NUAL GROUNDWATER RECHARGE ANALYSIS WORKSHEET	

STORM SEWER DESIGN CALCULATIONS TABLE 7-1: TYPICAL RUNOFF COEFFICIENTS NOAA POINT PRECIPITATION FREQUENCY ESTIMATES **GROUNDWATER MOUNDING ANALYSIS WORKSHEETS** TABLE 5-2: WATER QUALITY DESIGN STORM RAINFALL DISTIBUTION 2, 10 & 100-YR HYDROGRAPH REPORTS WATER QUALITY STORM HYDROGRAPH REPORTS

MAPS:

Ι. II.

SOIL BOUNDARY MAP	
EXISTING DRAINAGE AREA MAP	DM1
PROPOSED DRAINAGE AREA MAP	DM2
INLET DRAINAGE AREA MAP	DM3

BERTIN ENGINEERING

STORMWATER DRAINAGE ANALYSIS

TOWNHOUSE DEVELOPMENT BLOCK 4201.01, LOT 33.03 GROVERS MILL ROAD & MALL ACCESS ROAD TOWNSHIP OF LAWRENCE, MERCER COUNTY, NEW JERSEY BE# 21-210

I. <u>PROJECT SUMMARY</u>

The proposed project consists of developing a vacant lot into a proposed residential development with 6 multifamily buildings. The entire site has an area of 6.86 acres. The existing site is mostly wooded. The proposed development will add 3.086 acres of impervious and contain 1.498 acres of new roof area.

For the stormwater drainage analysis, the portion of the site being disturbed will be considered the area of study. The area of study drains into the existing stormwater drainage system located in Grovers Mill Road. The total size of the studied drainage area is 5.225 acres.

Due to the increase in impervious surface, small-scale infiltration basins will be required to reduce the proposed runoff to meet the required rate reductions. The outlet of the drainage system will tie directly into the existing stormwater system in Grovers Mill Road. To address water quality, runoff from the proposed parking areas and driveways be treated by a sand filter located in each aboveground infiltration basin. A separate underground infiltration basin is proposed to collect the rooftop runoff from Building B.

Frequency (year)	Existing (cfs)	Proposed (cfs)	Change (cfs)	% Exist.	Max. Allowable %
2	1.72	0.86	0.87	49.8%	50
10	6.43	4.72	1.71	73.3%	75
100	18.54	14.77	3.77	79.7%	80

Below is a summary of the stormwater analysis results:

As per the above table, runoff directed towards the Grovers Mill Road stormwater system will be reduced to levels below the existing with the required reductions for all design storms.

JOB	21-210: Residential D	21-210: Residential Development - Lawrence, NJ				
SHEET NO.	1	OF	10			
CALCULATED BY	MBL	DATE	3/19/2024			
CHECKED BY	CJB	DATE	3/19/2024			
SCALE						

II. STORMWATER DRAINAGE CALCULATIONS

1. DESIGN CRITERIA

All hydrographs and peak flow rates were calculated utilizing the Technical Release 55 (TR-55) method.

for *TR-55* Rainfall distribution = C A_m = drainage area (mi²) Q = runoff (in) Rainfall distribution = C $q_p = q_u A_m Q F_p$ q_p = peak discharge (cfs) q_u = unit peak discharge (cfs)

F_p = pond and swamp adjustment factor

2. EXISING RUNOFF

I) Area of Concern:

CN Values:

Drainage Area	Total	Woods (acres		
	(acres)	HSG B HS		
Existing	5.225	2.994	2.231	

The existing drainage area is located in multiple soil types (see Soil Boundary Map).

Woods (B) =	55
Woods (C) =	70

II) Peak Discharge (as determined by TR-55):

Existing Drainage Area - Pervious									
Frequency	requency Rainfall, Curve T _c Peak Discharge								
(year)	(year) P (in) Number (min) (cfs)								
2	3.31			1.72					
10	5.01	61	15.2	6.43					
100	8.33			18.54					

3. PROPOSED RUNOFF

The primary portion of the proposed pavement areas as well as the proposed roof drainage from Buildings A, D & E will be directed into an aboveground basin with sand filter (Prop - Detained 1). The discharge from this basin , as well as a portion of the proposed pavement and the roof drainage from Buildings C & F, will be directed into another aboveground basin with sand filter (Prop - Detained 2). The proposed roof area of Building B will enter an underground infiltration basin (Basin B) located beneath the associated parking area. The remaining portion of the proposed drainage area (Prop - Bypass) will flow toward Mall Access Road. The outflow from Prop - Detained 2 will flow into the existing drainage on Grovers Mill Road.

Drainage Area	Total	Pervious	(acres)	Impervious
	(acres)	HSG B	HSG C	(acres)
Prop - Detained 1	1.853	0.524	0.017	1.312
Prop - Detained 2	2.520	0.520	0.465	1.535
Prop - Bypass	0.622	0.380	0.233	0.009
Prop - Building B	0.230	0.000	0.000	0.230
CN Values:	Pervious (B) = Pervious (C) = Impervious =	61 74 98		

BERTIN ENGINEERING 66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788

JOB	21-210: Residential Development - Lawrence, NJ				
SHEET NO.	2	OF	10		
CALCULATED BY	MBL	DATE	3/19/2024		
CHECKED BY	CJB	DATE	3/19/2024		
SCALE					

4. PROPOSED RUNOFF - DETAINED 1

I) Peak Discharge: Proposed Drainage Area - Detained 1 (as determined by TR-55):

Proposed Drainage Area - Detained 1 (Pervious)								
Frequency	Frequency Rainfall, Curve T _c Peak Discharge							
(year)	P (in)	Number	(min)	(cfs)				
2	3.31			0.20				
10	5.01	61	12.2	0.72				
100	8.33			2.07				

Proposed Drainage Area - Detained 1 (Impervious)									
Frequency	Frequency Rainfall, Curve T _c Peak Discharge								
(year) P (in) Number (min) (cfs)									
2	3.31			4.12					
10	5.01	98	10.0	6.27					
100	8.33			10.47					

	Proposed Drainage Area - Detained 1							
Storm	Pe	rvious	Imperv	vious	Com	ibined		
(year)	Peak	Time	Peak	Time	Peak	Time		
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)		
2	0.20	12.22	4.12	12.13	4.26	12.15		
10	0.72	12.20	6.27	12.13	6.92	12.15		
100	2.07	12.18	10.47	12.13	12.42	12.15		

II) Detention Summary - Basin #1:

Outlet Control: 43 LF of 15" HDPE @ 5.0%, Inv 72.50 7" Orifice at Elevation 73.0 4' Rect. Weir at Elevation 74.25 4'x4' Overflow Riser at Elevation 75.00

Depth vs. Storage					
Elevation	Storage				
71.00					
72.00	0.00	4,710			
74.00	1.08	14,947			
76.00	9.94	25,989			

Inflow vs. Outflow							
Storm	Inflow Outflow						
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.		
	(cfs)	(hr)	(cfs)	(hr)	(ft)		
2	4.26	12.15	0.24	13.75	73.28		
10	6.92	12.15	1.11	12.68	74.04		
100	12.42	12.15	7.38	12.27	75.00		

BERTIN ENGINEERING	JOB	21-210: Residential Development - Lawrence, NJ		vrence, NJ
66 GLEN AVENUE	SHEET NO.	3	OF	10
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/19/2024
(201) 670-6688	CHECKED BY	CJB	DATE	3/19/2024
FAX (201) 670-9788	SCALE			

III) Emergency Spillway Design:

Above Ground Basin contains an emergency spillway designed for the unrouted 100 Year Storm flow.

 $\begin{array}{rcl} Q_{100} = & 12.42 \ \text{cfs} \\ \text{Use } Q = 3.2 \ \text{x L x H}^{1.5} \ \text{to solve for L (weir Length) with H} = & 0.5 \ \text{ft} \\ 12.42 \ \text{cfs} = 3.2 \ \text{x L x } 0.5^{1.5} & \text{L} = & 11.0 \ \text{ft} & \text{Use 11 ft} \end{array}$ Check Allowable Discharge Velocity: $V = & 2.4 \ \text{ft/s}$ (Allowable Discharge Velocity) $V = & Q \ / A = & 12.42 \ \text{cfs} \ / (11 \ \text{ft} \ \text{x} \ 0.5 \ \text{ft}) = & 2.26 \ \text{ft/s} < 2.4 \ \text{ft/s} \ \mathbf{OK}$

The elevation of the emergency spillway is 75.00 with a peak emergency 100-year water elevation of 75.50.

5. PROPOSED RUNOFF - DETAINED 2

I) Peak Discharge: Proposed Drainage Area - Detained 2 (as determined by TR-55):

Proposed Drainage Area - Detained 2 (Pervious)						
Frequency	Rainfall,	Curve	T _c	Peak Discharge		
(year)	P (in)	Number	(min)	(cfs)		
2	3.31			0.57		
10	5.01	67	19.3	1.54		
100	8.33			3.85		

Proposed Drainage Area - Detained 2 (Impervious)						
Frequency	Rainfall,	Curve T _c Peak Discharge				
(year)	P (in)	Number	(min)	(cfs)		
2	3.31			4.82		
10	5.01	98	10.0	7.34		
100	8.33			12.25		

Proposed Drainage Area - Basin #2								
Storm	Basin #1 Route		1 #1 Route Detained 2 (Perv)			d 2 (Imp)	Comb	oined
(year)	Peak	Time	Peak	Time	Peak	Time	Peak	Time
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)
2	0.24	13.75	0.57	12.28	4.82	12.13	5.19	12.15
10	1.11	12.68	1.54	12.27	7.34	12.13	8.87	12.15
100	7.38	12.27	3.85	12.25	12.25	12.13	21.41	12.17

II) Detention Summary - Basin #2:

Basin:	26 LF of 18" HDPE @ 4.0%, Inv 67.0
Outlet Control:	1.8' Rectangular Weir at Elevation 68.50
	4'x4' Overflow Riser at Elevation 70.33

Depth vs. Storage					
Elevation Discharge Storag (ft) (cfs) (cf)					
67.00	0.00	0			
69.00	2.04	14,142			
71.00	15.25	28,884			

JOB	21-210: Residential D	21-210: Residential Development - Lawrence, NJ			
SHEET NO.	4	OF	10		
CALCULATED BY	MBL	DATE	3/19/2024		
CHECKED BY	CJB	DATE	3/19/2024		
SCALE					

Inflow vs. Outflow							
Storm	Inflow			Outflow			
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.		
	(cfs)	(hr)	(cfs)	(hr)	(ft)		
2	5.19	12.15	0.78	13.03	68.76		
10	8.87	12.15	4.27	12.40	69.32		
100	21.41	12.17	13.65	12.37	70.57		

III) Overflow Design

Above Ground Basin contains an emergency spillway designed for the unrouted 100 Year Storm flow.

 Q_{100} =21.41 cfsUse Q = 3.2 x L x H^{1.5} to solve for L (weir Length) with H =0.5 ft21.41 cfs = 3.2 x L x 0.5^1.5L =18.9 ftUse 19 ft

Check Allowable Discharge Velocity:V =2.4 ft/s (Allowable Discharge Velocity)V =Q / A =21.41 cfs / (19 ft x 0.5 ft) =2.25 ft/s < 2.4 ft/s **OK**

The elevation of the emergency spillway is 70.60 with a peak emergency 100-year water elevation of 71.10.

6. PROPOSED RUNOFF - BYPASS

Proposed Drainage Area - Bypass (Pervious)							
Frequency	Rainfall,	nfall, Curve T _c Peak Discharge					
(year)	P (in)	Number	(min)	(cfs)			
2	3.31			0.44			
10	5.01	66	10.0	1.22			
100	8.33			3.07			

Proposed Drainage Area - Bypass (Impervious)						
Frequency	Rainfall,	Curve T _c Peak Discharge				
(year)	P (in)	Number	(min)	(cfs)		
2	3.31			0.03		
10	5.01	98	10.0	0.04		
100	8.33			0.07		

Proposed Drainage Area - Bypass									
Storm	Pervious		ervious Impervious		Combined				
(year)	Peak	Time	Peak	Time	Peak	Time			
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)			
2	0.44	12.17	0.03	12.13	0.47	12.17			
10	1.22	12.15	0.04	12.13	1.26	12.15			
100	3.07	12.15	0.07	12.13	3.14	12.15			

7. PROPOSED RUNOFF - COMBINED (TOTAL)

Proposed Drainage Area									
Storm	Detention Route		Вур	Bypass		Combined			
(year)	Peak	Time	Peak	Time	Peak	Time			
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)			
2	0.78	13.03	0.47	12.17	0.86	12.93			
10	4.27	12.40	1.26	12.15	4.72	12.37			
100	13.65	12.37	3.14	12.15	14.77	12.33			

BERTIN ENGINEERING	JOB	OB 21-210: Residential Development - Lawrence,		rence, NJ
66 GLEN AVENUE	SHEET NO.	5	OF	10
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/19/2024
(201) 670-6688	CHECKED BY	CJB	DATE	3/19/2024
FAX (201) 670-9788	SCALE			

8. EXISTING VS. PROPOSED RUNOFF

Frequency (vear)	Existing (cfs)	Proposed (cfs)	Change (cfs)	% Exist.
2	1.72	0.86	0.87	49.8%
10	6.43	4.72	1.71	73.3%
100	18.54	14.77	3.77	79.7%

The calculations indicate that the proposed site redevelopment with detention decreases the surface runoff for the four storms. Runoff due to a 2, 10 & 100 year storm are decreased by 0.87, 1.71 & 3.77 cfs respectively.

9. INFILTRATION BASIN DESIGN FOR ROOF RUNOFF

The infiltration basin will collect the entire 100-year runoff volume from the proposed retail building.

I) Determine the 100-Year Runoff Volume

Frequency	Rainfall,	Curve	Area	T _c	Peak Discharge	Volume
(year)	P (in)	Number	(acres)	(min)	(cfs)	(cf)
100	8.33	98	0.230	10.0	1.84	6,754

II) Determine Size of Infiltration Basin B:

Infiltration basin will be constructed from Cultec Recharger 360HD chambers w/ 6" stone bed. Total size of infiltration basin is 114 chambers with a bed size of 2,725 sf. Volume of Infiltration Basin = 6,885 cf > 6,754 cf

See attached Cultec Recharger 360HD Volume Worksheet.

10. WATER QUALITY DESIGN

The above ground detention basin is designed with a sand filter to treat the pavement area directed into the drainage system for the Stormwater Quality Design Storm. As per N.J.A.C. 7:8-5.6, the BMP flow rate is determined using NRCS methodology based on the following criteria:

 T_d (Storm Duration) = 2 hours

I = 0.625 inches/hr for Stormwater Quality Design Storm (See Table 5-1)

I) Area of Analysis:

Treated drainage area is equal to the detained basin areas.

Drainage Area	Total	Pervious (acres)		Pervious (acres)		Impervious
	(acres)	HSG B	HSG C	(acres)		
Prop - Treated 1	1.853	0.524	0.017	1.312		
Prop - Treated 2	2.520	0.520	0.465	1.535		

II) Treated Area 1 (Prop - Basin 1) Routed Through Basin 1:

Proposed Drainage Area - Treated 1 (Pervious)							
Frequency	Rainfall,	Curve	Τ _c	Peak Discharge	Volume		
(year)	P (in)	Number	(min)	(cfs)	(cf)		
WQ	1.25	61	12.2	0.00	0		

BERTIN ENGINEERING 66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788

JOB	21-210: Residential Development - Lawrence, NJ					
SHEET NO.	6	OF	10			
CALCULATED BY	MBL	DATE	3/19/2024			
CHECKED BY	CJB	DATE	3/19/2024			
SCALE						

Proposed Drainage Area - Treated 1 (Impervious)							
Frequency (vear)	Rainfall, P (in)	Curve Number	T _c (min)	Peak Discharge (cfs)	Volume (cf)		
WQ	1.25	98	10.0	3.59	4,927		

Proposed Drainage Area - Treated 1									
Storm	Pe	rvious	Imperv	vious	ous Combined				
(year)	Peak	Time	Peak	Time	Peak	Time	Volume		
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)	(cf)		
WQ	0.00	n/a	3.59	1.12	3.59	1.12	4,927		

Inflow vs. Outflow								
Storm	Inflow	Outflow						
(year)	Peak Flow	Time	Peak Flow Time Peak		Peak Elev.			
	(cfs)	(hr)	(cfs)	(hr)	(ft)			
WQ	3.59	1.12	0.00	n/a	72.04			

Entire Water Quality Storm Volume is contained within the aboveground basin below the lowest orifice.

III) <u>Treated Area 2 (Prop - Basin 2) Routed Through Basin 2:</u>

Proposed Drainage Area - Treated 2 (Pervious)								
Frequency	Rainfall,	Curve	Tc	Peak Discharge	Volume			
(year)	P (in)	Number	(min)	(cfs)	(cf)			
WQ	1.25	67	19.3	0.02	49			

Proposed Drainage Area - Treated 2 (Impervious)									
Frequency Rainfall, Curve T _c Peak Discharge Volume									
(year)	P (in)	(cfs)	(cf)						
WQ	1.25	98	10.0	4.20	5,765				

Proposed Drainage Area - Treated 2										
Storm Treated #1 Route Treated 2 (Perv) Treated 2 (Imp) Combin										
(year)	Peak	Time	Peak	Time	Peak	Time	Peak	Time		
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)		
WQ	0.00	n/a	0.02	1 82	4 20	1 12	0.00	n/a		

Entire Water Quality Storm Volume is contained within the aboveground basin below the lowest orifice.

11. STORMWATER RECHARGE REQUIREMENT

As per the NJDEP, the required amount of groundwater recharge is determined by the Annual Groundwater Recharge Analysis worksheet (see attached). According to page 1 of the worksheet, there is an annual recharge deficit for the post-development condition of 58,289 (Vdef) for the portion of the site to be disturbed (5.224 acres).

Basin 1 collects a large amount of the impervious area from the pavement. The amount of impervious area collected is 57,151 sf (Aimp) and provides the Annual BMP Recharge Volume (Vdef) at a calculated BMP effective depth (dBMP) of 2.4 inches. Since the provided BMP effective depth in the basin of 24 inches (below lowest orifice) is greater than the calculated depth, the stormwater recharge requirement is satisfied. This calculation omits the additional recharge provided by the other infiltration basins utilized on the property. See the attached Soil Maps for the locations of the referenced soil types.

BERTIN ENGINEERING	JOB	21-210: Residential Development - Lawrence, NJ					
66 GLEN AVENUE	SHEET NO.	7	OF	10			
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/19/2024			
(201) 670-6688	CHECKED BY	CJB	DATE	3/19/2024			
FAX (201) 670-9788	SCALE						

12. STORM SEWER ANALYSIS TABLE

The following table lists the areas collected by the proposed storm sewer. See the attached Storm Sewer Design Calculations for pipe capacity calculations.

Use c = 0.99 for impervious areas 0.25 for pervious areas (HSG B) 0.51 for pervious areas (HSG C)

Inlet	Imperv.	Perv. B	Perv. C	Total	Weighted
	(Acres)	(Acres)	(Acres)	(Acres)	С
DI#1	0.095	0.021	0.000	0.116	0.86
DI#2	0.105	0.029	0.000	0.134	0.83
DI#3	0.188	0.017	0.012	0.217	0.91
DI#4	0.060	0.009	0.000	0.069	0.89
DI#5	0.088	0.007	0.000	0.095	0.94
DI#6	0.000	0.349	0.000	0.349	0.25
DI#7	0.204	0.002	0.002	0.208	0.98
DI#8	0.226	0.045	0.041	0.312	0.82
DI#9	0.528	0.000	0.000	0.528	0.99
DI#10	0.151	0.000	0.036	0.187	0.90
TD#1	0.143	0.000	0.062	0.205	0.84
TD#2	0.059	0.000	0.015	0.074	0.89
DMH#1	0.282	0.000	0.000	0.282	0.99
DMH#2	0.401	0.000	0.000	0.401	0.99

13. PREFORMED SCOUR HOLE DESIGN

Scour holes are designed for the 25-year storm. A scour hole is proposed for each discharge point into the two above-ground basins.

Scour Hole #1:

Scour Hole #2:

BERTIN ENGINEERING			JC	ЭΒ		21-210: Resident	vrence, NJ	
66 GLEN AVENUE		S	HEET NO		8	OF	10	
GLEN ROCK, NEW	/ JERSEY 07452		C	CALCULATED BY CHECKED BY		MBL	DATE	3/19/2024
(201) 670	0-6688		С			CJB	DATE	3/19/2024
FAX (201) 6	670-9788		S	CALE				
Scour Hole	#3:							
Q ₂₅ =	11.84 cfs (S	ee Storm Sev	wer Desig	gn Calcu	llations)			
D _o =	18 in							
$T_w =$	0.2D _o =	0.30 ft						
Ler	igth of Hole Botto	om (L) =				3 x D ₂ =	4 50 ft	
\\/ic	Uth of Hole Botto	m(M) =				$2 \times W =$	4.00 ft	
VVIC N	Andian Stone Dia	$(d_{-1}) =$	(00	125 / 0		2×10^{-10}		" – 0 67 ft)
IV.		. (u ₅₀) –	(0.0	1237 0.	$2D_0$) X (C	$(v_0) =$	0.65 It (USe d	- 0.67 IL)
Scour Hole	#4:							
Q ₂₅ =	0.41 cfs (S	ee Storm Sev	wer Desig	gn Calcu	lations)			
D _o =	6 in							
T _w =	0.2D _o =	0.10 ft						
Len	igth of Hole Botto	om (L) =				3 x D _o =	1.50 ft	
Wic	th of Hole Botto	m (W) =				2 x W _o =	1.00 ft	
N	ledian Stone Dia	$(d_{ro}) =$	(00	125 / 0 :	2D_) x (0	$(W_{2})^{4/3} =$	0 10 ft (Use 4	" = 0 33 ft)
			(0.0	,		(,,		0.00 10,
Scour Hole	#5:							
A =	0.361 ac							
с =	0.99 for im	pervious area	as					
I ₂₅ =	5.80 in/hr (T _c = 10 min.))					
Q ₂₅ =	0.99	x 5	5.80	x	0.361	=	2.07 cfs	
D _o =	10 in							
T _w =	0.2D _o =	0.17 ft						
Ler	ath of Hole Botto	om (L) =				3 x D. =	2 50 ft	
Wic	Uth of Hole Botto	m(W) =				$2 \times W =$	1 67 ft	
VVIC N	Andian Stone Dia	(d) =	(00	125 / 0 *		2×10^{-10}		" – 0 22 ft)
IV		. (u ₅₀) –	(0.0	120/0.		× / VV ₀ / -	0.03 11 (050 4	- 0.33 ILJ

BERTIN ENGINEERING		JOB	21-210: Residential Development - Lawrence, NJ			
	66 GLEN AVENUE	SHEET NO.	9	OF	10	
GL	EN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/19/2024	
	(201) 670-6688	CHECKED BY	CJB	DATE	3/19/2024	
	FAX (201) 670-9788	SCALE				
14	GROUNDWATER MOUNDING ANALYSIS					
	The soils report was prepared by Wham Enginee 10 in/hr is used at TP-2.	ering Services, Inc.	on March 29, 202	3. A percolati	on rate of	
	Basin #1:					
	Time to Drain 100 Year Volume:					
	Test Infiltration Rate:	10 in/hr				
	Design Infiltration Rate (1/2 Test Rate)	5 in/hr =	0.417 ft/hr			
	Volume Below Lowest Orifice:	17,708 cf				
	Area of Infiltration	4,550 sf				
	Time to Drain:	17,708 cf / (227	0 sf x 0.863 ft/hr)			
	=	9.34 hours				
	Elevation of Groundwater:	66 (10 ft do	wn from existing (nrade elevatio	on of TP-2)	
	Bottom of Basin Elevation:	71.00			,	
	Groundwater Mounding Height at Center	10 726 ft (From	Groundwater Mou	unding Calcula	ator)	
	Elevator of Groundwater Mounding at Center:	10.726 ft + 66.0	= 76.73 (Abo	ve basin botto	om)	
			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Since groundwater mounding at center is higher	than bottom of bas	in, additional anal	ysis is require	ed.	
	Trial Design Infiltration Rate / Factor:	1.222 in/hr =	0.102 ft/hr			
	Time to Drain x Factor:	17,708 cf / (455	0 sf x 0.102 ft/hr)	= 38.22	nours	
	Groundwater Mounding Height at Center:	4.993 ft (From	Groundwater Mou	unding Calcul	ator)	
	Elevaton of Groundwater Mounding at Center:	4.993 ft + 66 =	70.99 (App	rox. basin bot	tom)	
	Basin #2:					
	The soils report was prepared by Wham Enginee 10 in/hr is used at TP-1.	ering Services, Inc.	on March 29, 202	3. A percolati	on rate of	
	Time to Drain 100 Year Volume:					
	Test Infiltration Rate:	10 in/hr				
	Design Infiltration Rate (1/2 Test Rate)	5 in/hr =	0.417 ft/hr			
	Volume Below Lowest Orifice:	10,607 cf				
	Area of Infiltration	6,921 sf				
	Time to Drain:	10,607 cf / (227	0 sf x 0.863 ft/hr)			
	=	3.68 hours				
	Elevation of Groundwater:		wh from ovicting	arado olovatio	n of TP 2	
	Bottom of Basin Elevation:	67 00	wit from existing (grade elevatio	110117-2)	
	Groundwater Mounding Height at Center:	4 861 ft (Erom	Groundwater Mou	Inding Calcul	ator)	
	Elevaton of Groundwater Mounding at Center	4.001 IL (FIOIII 4.861 ft + 65.0	= 69.86 (Abo	ve hasin hotta	(m)	
	Levelor of Groundwater mounding at Genter.	4.001 IL + 00.0	00.00 00.00		/////	
	Since groundwater mounding at center is higher	than bottom of bas	in, additional anal	ysis is require	ed.	
	Trial Design Infiltration Rate / Factor	0.620 in/hr =	0.052 ft/br			
	Time to Drain x Factor:	10.607 cf / (692	1 sf x 0.052 ft/hr)	= 29.66 l	nours	
	Groundwater Mounding Height at Center:	1,989 ft (From	Groundwater Moi	unding Calcula	ator)	
	Elevaton of Groundwater Mounding at Center:	1.989 ft + 65 =	66.99 (App	rox. basin bot	íom)	

BERTIN ENGINEERING	JOB	21-210: Residential Development - Lawrence, NJ				
66 GLEN AVENUE	SHEET NO.	10	OF	10		
GLEN ROCK, NEW JERSEY 07452	CALCULATED BY	MBL	DATE	3/19/2024		
(201) 670-6688	CHECKED BY	CJB	DATE	3/19/2024		
FAX (201) 670-9788	SCALE					
Basin B:						
The soils report was prepared by Wham Engine 10 in/hr is used at TP-4.	eering Services, Inc.	on March 29, 202	23. A percolati	ion rate of		
<u>Time to Drain 100 Year Volume:</u>						
Test Infiltration Rate:	10 in/hr					
Design Infiltration Rate (1/2 Test Rate)	5 in/hr =	0.417 ft/hr				
Volume Below Lowest Orifice:	7,270 cf					
Area of Infiltration	2,725 sf					
Time to Drain:	7,270.0 cf / (227	′0 sf x 0.863 ft/hr)				
	= 6.40 hours					
Elevation of Groundwater: Bottom of Basin Elevation:	70 (9 ft dow 74.50	vn from existing g	rade elevatior	n of TP-4)		
Groundwater Mounding Height at Center:	3.608 ft (From	Groundwater Mor	unding Calcul	ator)		
Elevaton of Groundwater Mounding at Center:	3.608 ft + 70.0) = 73.61 (Belo	ow basin botto	om)		

Length

Installed Length

Bare Chamber Volume

Installed Chamber Volume

CULTEC Stormwater Design Calculator

Date:	November 15, 2023				
	Project Information:			Calcu	ulations Performed By:
			RECHARGER 360HD		
	Recharger 360HD Chamber Specifications			Breakdov Recharger	wn of Storage Provided by 360HD Stormwater System
	Height 36.0	inches	ALSA.	Within Within Feed	Connectors 4,208.59 cu. feet

Materials List

Recharger :	360HD		
Total Number of Chambers Required	114	pieces	
Chamber Units	114	pieces	
nd Caps	4	pieces	
VLV FC-48 Feed Connectors	2	pieces	Based on 2
ULTEC No. 410 Non-Woven Geotextile	1008	sq. yards	
CULTEC No. 4800 Woven Geotextile	26	feet	
Stone	248	cu. yards	

Bed Detail

4.17

3.67

36.69

55.78

feet

feet

cu. feet

cu. feet

Bed Layout I	nformation	
Number of Rows Wide	2	pieces
Number of Chambers Long	57	pieces
Chamber Row Width	10.75	feet
Chamber Row Length	211.69	feet
Bed Width	12.75	feet
Bed Length	213.69	feet
Bed Area Required	2724.55	sq. feet
Length of Separator Row	N/A	feet

2,675.29 cu. feet 6,885.3 cu. feet

6754.00 cu. feet

Within Stone

Total Storage Provided

Total Storage Required

Bed detail for reference only. Not project specific. Not to scale.

Conceptual graphic only. Not job specific.

	Cross Section Table Reference		
А	Depth of Stone Base	6.0	inches
в	Chamber Height	36.0	inches
С	Depth of Stone Above Units	6.0	inches
D	Depth of 95% Compacted Fill	12.0	inches
E	Max. Depth Allowed Above the Chamber	12.00	feet
F	Chamber Width	60.0	inches
G	Center to Center Spacing	5.75	feet
н	Effective Depth	4.00	feet
1	Bed Depth	5.00	feet

New Jersey	y ter	Annual Groundwater Re	charge A	nalysis	(based on G	SR-32)			Project Name:	21-210		
Recharge Spreadshe Version 2.0	et	Select Township \downarrow	Average Annual P (in)	Climatic Factor					Description:	Lawrence, N	٩J	
November 2	2003	MERCER CO., LAWRENCE TWP	44.9	1.43					Analysis Date:	10/12/23		
		Pre-Developed Cond	litions						Post-Develope	d Conditions		
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)
1	0.733	Woods	Pits, Muck	0.0	-		1	0.418	Open space	Pits, Muck	0.0	-
2	0.898	Woods	Matapeake	13.0	42,519		2	0.196	Open space	Matapeake	12.9	9,194
3	0.938	Woods	Matapeake	13.0	44,413		3	0.418	Open space	Matapeake	12.9	19,607
4	0.361	Woods	Portsmouth	0.0	-		4	0.189	Open space	Portsmouth	0.0	-
5	0.063	Woods	Sassafras	13.3	3,036		5	0.06	Open space	Sassafras	13.2	2,878
6	0.295	Woods	Othello	0.0	-		6	0.168	Open space	Othello	0.0	-
7	1.936	Woods	Fallsington	0.0	-		7	0.548	Open space	Fallsington	0.0	-
8	0						8	3.227	Impervious areas	Fallsington	0.0	-
9	0					9 0						
10	0						10	0				
11	0						11	0				
12	0						12	0				
13	0						13	0				
14	0						14	0				
15	0						15	0				
Total =	5.2			Total Annual Recharge (in)	Total Annual Recharge (cu-ft)		Total =	5.2			Total Annual Recharge (in)	Total Annual Recharge (cu.ft)
				4.7	89,967		Annual	Recharg	ge Requirements Calculat	ion ↓	1.7	31,678
Procedure	to fill the	Pre-Development and Post-Development Cor	nditions Tables			% of Pre-	Developed	Annual Re	charge to Preserve =	100%	Total Impervious Area (sq.ft)	140,568
For each land	segment, fir	st enter the area, then select TR-55 Land Cover, then selec	t Soil. Start from the	top of the table		Post-D	evelopm	ent Ann	ual Recharge Deficit=	58,289	(cubic feet)	
and proceed d	ownward. D	on't leave blank rows (with A=0) in between your segment e	ntries. Rows with A=0	will not be		Recha	arge Effici	iency Pa	rameters Calculations (ar	ea averages)		
displayed or u	sed in calcu	lations. For impervious areas outside of standard lots select	t "Impervious Areas" a	as the Land Cove	r.	RWC=	0.98	(in)	DRWC=	0.25	(in)	
Soil type for in	npervious ar	eas are only required if an infiltration facility will be built with	in these areas.			ERWC =	0.28	(in)	EDRWC=	0.07	(in)	

Project Name		Descriptio	on		Analysis	Bate	BMP or L	ID Type				
21-210		Lawrence	, NJ		10/12/23		Infiltration Basin 1					
Recharge BMP Input Pa	rameters			Root Zone Water cap	acity Calcu	lated Paran	neters	Recharge Design Par	rameters			
Parameter	Symbol	Value	Unit	Parameter	Symbol	Value	Unit	Parameter	Symbol	Value	Unit	
BMP Area	ABMP	4550.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	0.28	in	Inches of Runoff to capture	Qdesign	0.20	in	
BMP Effective Depth, this is the design variable	dBMP	2.4	in	ERWC Modified to consider dEXC	EDRWC	0.07	in	Inches of Rainfall to capture	Pdesign	0.27	in	
Upper level of the BMP surface (negative if above ground)	dBMPu	0.0	in	Empty Portion of RWC under Infilt. BMP	RERWC	0.05	in	Recharge Provided Avg. over Imp. Area		12.2	in	
Depth of lower surface of BMP, must be>=dBMPu	dEXC	60.0	in					Runoff Captured Avg. over imp. Area		12.6	in	
Post-development Land Segment Location of BMP, Input Zero if Location is distributed or undetermined	SegBMP	0	unitless									
				BMP Calculated Size	Parameter	'S		CALCULATION CI	HECK MES	SAGES		
				ABMP/Aimp	Aratio	0.08	unitless	Volume Balance->	OK			
				BMP Volume	VBMP	917	cu.ft	dBMP Check>	OK			
Parameters from Annua	I Recharge	e Worksheet		System Performance	Calculated	Parameters		dEXC Check>	OK			
Post-D Deficit Recharge (or desired recharge volume)	Vdef	58,289	cu.ft	Annual BMP Recharge Volume		58,289	cu.ft	BMP Location>	Location is	selected as	distrib	uted or undetermine
Post-D Impervious Area (or target Impervious Area)	Aimp	57,151	sq.ft	Avg BMP Recharge Efficiency		97.3%	Represents % Infiltration Recharged	OTHER NOTES				
Root Zone Water Capacity	RWC	0.98	in	%Rainfall became Runoff		77.7%	%	Pdesign is accurate only after	r BMP dimension	ns are updated	to make re	ch volume= deficit volume
RWC Modified to consider dEXC	DRWC	0.25	in	%Runoff Infiltrated		36.1%	%	of BMP infiltration prior to fillir	ng and the area o	occupied by BM	IP are igno	red in these calculations. I
Climatic Factor	C-factor	1.43	no units	%Runoff Recharged		14.3%	%	sensetive to dBMP, make sur	e dBMP selected	d is small enoug	gh for BMF	to empty in less than 3 da
Average Annual P	Pavg	44.9	in	%Rainfall Recharged		11.1%	%	Segment Location of BMP if y	/ou select "imper	vious areas" R	WC will be	minimal but not zero as d
Recharge Requirement over Imp. Area	dr	5.0	in					the soil type and a shallow ro	ot zone for this L	and Cover allo	wing consi	deration of lateral flow and

How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef" and "Aimp" on this page. This allows solution for a single BMP to handle the entire recharge requirement assuming the runoff from entire impervious area is available to the BMP. To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or

dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

STORM SEWER DESIGN CALCULATIONS

PROJECT: Townhouse Development - Lawrence, NJ

25 Year

PROJECT No:

STORM EVENT:

21-210

BY: MBL CHK'D: CJB DATE: 3/19/24

NOAA Precipitation Frequency Table Duration (min) 5 10 15 30 60 120 Intensity(in/hr) 5.80 4.90 2.42 7.28 3.63 1.51

Drai	nage	Area	Runoff				Inlet		Pipe Pipe Design											
Stru	cture	А	Coef.		Sum	Тс	i	Q	Тс	Tt	T total	i	Q	Dia	Manning's	Length	Slope	Q full	V full	V design
From	То	Acres	С	СхА	CA	min	in/hr	cfs	min	min	min	in/hr	cfs	in	n	ft	%	cfs	fps	fps
DI#1	DMH#1	0.12	0.86	0.10	0.10	10	5.80	0.58	10	-	10.00	5.80	0.58	15	0.012	111	3.90	13.8	11.2	6.2
DI#2	DMH#1	0.13	0.83	0.11	0.11	10	5.80	0.64	10	-	10.00	5.80	0.64	15	0.012	58	0.70	5.9	4.8	3.2
DMH#1	DMH#2	0.28	0.99	0.28	0.49	10	5.80	1.62	10	0.3	10.30	5.75	2.82	15	0.012	185	1.00	7.0	5.7	5.4
DI#3	DI#4	0.22	0.91	0.20	0.20	10	5.80	1.16	10	-	10.00	5.80	1.16	15	0.012	82	1.00	7.0	5.7	4.3
DI#4	DMH#2	0.07	0.89	0.06	0.26	10	5.80	0.35	10	0.32	10.32	5.74	1.49	15	0.012	121	3.00	12.1	9.9	7.0
DMH#2	FES#1	0.40	0.99	0.40	1.15	10	5.80	2.32	10.32	0.29	10.61	5.69	6.54	15	0.012	35	2.00	9.9	8.1	8.7
DI#5	BASIN#1	0.10	0.94	0.09	0.09	10	5.80	0.52	10	-	10.00	5.80	0.52	15	0.012	38	2.00	9.9	8.1	4.5
TD#1	DI#6	0.21	0.84	0.17	0.17	10	5.80	0.99	10	-	10.00	5.80	0.99	8	0.011	228	0.50	1.0	2.9	3.3
DI#6	DI#7	0.35	0.25	0.09	0.26	10	5.80	0.52	10	1.15	11.15	5.59	1.45	15	0.012	45	0.70	5.9	4.8	4.1
DI#7	DMH#3	0.21	0.98	0.20	0.46	10	5.80	1.16	11.15	0.18	11.33	5.56	2.56	15	0.012	225	0.80	6.3	5.1	4.9
OCS#1	DMH#3							2.84					2.84	15	0.012	43	5.00	15.6	12.7	10.1
DMH#3	DMH#4				0.46				11.33	0.77	12.10	5.42	5.33	18	0.012	78	1.50	13.9	7.9	7.6
DI#8	DMH#4	0.31	0.83	0.26	0.26	10	5.80	1.51	10	-	10.00	5.80	1.51	18	0.012	17	0.50	8.0	4.5	3.5
DI#9	DI#10	0.53	0.99	0.52	0.52	10	5.80	3.02	10	-	10.00	5.80	3.02	15	0.012	21	1.00	7.0	5.7	5.6
DI#10	DMH#4	0.19	0.90	0.17	0.69	10	5.80	0.99	10	0.06	10.06	5.79	4.00	18	0.012	232	0.60	8.8	5.0	4.9
DMH#4	FES#2	0.31	0.83	0.26	1.67	10	5.80	1.51	12.1	0.17	12.27	5.39	11.84	18	0.012	36	1.10	11.9	6.7	7.7
TD#2	BASIN#2	0.07	0.89	0.07	0.07	10	5.80	0.41	10	-	10.00	5.80	0.41	6	0.011	34	0.70	0.6	3.1	3.1
OCS#2	EXIN							7.42					7.42	18	0.013	26	4.00	21.0	11.9	10.9

TABLE 7.1

TYPICAL RUNOFF COEFFICIENTS (C VALUES) FOR 100 YEAR FREQUENCY STORM

			Hydrologic	Soil Group	
Land Use Description		Α	В	Ĉ	D
Cultivated land:			—	_	_
without conservation treatme	nt	0.49	0.67	0.81	0.88
with conservation treatment		0.27	0.43	0.61	0.67
Pasture or range land:					
poor condition		0.38	0.63	0.78	· 0.84
good condition		NA	0.25	0.51	0.65
Meadow: good condition		NA	NA	0.44	0.61
Wood or forest land:					
thin stand, poor cover, no mu	ılch	NA	NA	0.59	0.79
good cover		NA	NA	0.45	0.59
Open spaces, lawns, parks, golf	courses, cemeteries:				
good condition, grass cover o	NA	0.25	0.51	0.65	
fair condition, grass cover on	50–75% of area	NA	0.45	0.63	0.74
Commercial and business areas	0.84	0.90	0.93	0.96	
Industrial districts (72% imperv	0.67	0.81	0.88	0.92	
Residential:					
Average lot	Average				
size	impervious				
¹∕s acre	65%	0.59	0.76	0.86	0.90
¼ acre	38%	0.25	0.55	0.70	0.80
⅓ acre	30%	NA	0.49	0.67	0.78
½ acre	25%	NA	0.45	0.65	0.76
1 acre	20%	NA	0.41	0.63	0.74
Paved parking lots, roofs, drive	ways, etc.	0.99	0.99	0.99	0.99
Streets and roads:					
paved with curbs and storm s	sewers	0.99	0.99	0.99	0.99
gravel		0.57	0.76	0.84	0.88
dirt		0.49	0.69	0.80	0.84

Note: NA denotes information is not available; design engineers should rely on another authoritative source.

Source: New Jersey Department of Environmental Protection, Technical Manual for Land Use Regulation Program, Bureaus of Inland and Coastal Regulations, Stream Encroachment Permits (Trenton, New Jersey: Department of Environmental Protection, Revised September 1995) p. 12.

NOAA Atlas 14, Volume 2, Version 3 Location name: Lawrence Township, New Jersey, USA* Latitude: 40.2864°, Longitude: -74.6847° Elevation: 71 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.08 (3.68-4.50)	4.86 (4.42-5.38)	5.78 (5.22-6.38)	6.46 (5.82-7.12)	7.28 (6.53-8.03)	7.88 (7.04-8.70)	8.48 (7.55-9.38)	9.05 (8.00-10.0)	9.76 (8.54-10.9)	10.3 (8.94-11.5)
10-min	3.25 (2.95-3.60)	3.89 (3.53-4.30)	4.63 (4.18-5.11)	5.16 (4.66-5.69)	5.80 (5.21-6.40)	6.28 (5.61-6.93)	6.74 (5.99-7.45)	7.17 (6.34-7.96)	7.72 (6.76-8.60)	8.11 (7.04-9.08)
15-min	2.71 (2.46-3.00)	3.26 (2.96-3.60)	3.90 (3.53-4.31)	4.35 (3.93-4.80)	4.90 (4.40-5.41)	5.30 (4.74-5.85)	5.68 (5.05-6.28)	6.03 (5.33-6.69)	6.47 (5.67-7.22)	6.78 (5.89-7.60)
30-min	1.86 (1.68-2.05)	2.25 (2.04-2.49)	2.77 (2.51-3.06)	3.15 (2.84-3.48)	3.63 (3.26-4.01)	3.99 (3.57-4.40)	4.35 (3.87-4.81)	4.70 (4.15-5.21)	5.15 (4.51-5.74)	5.49 (4.77-6.16)
60-min	1.16	1.41	1.78	2.05	2.42	2.70	3.00	3.29	3.70	4.01
	(1.05-1.28)	(1.28-1.56)	(1.61-1.96)	(1.85-2.26)	(2.17-2.67)	(2.42-2.98)	(2.66-3.31)	(2.91-3.65)	(3.24-4.12)	(3.48-4.49)
2-hr	0.703	0.857	1.09	1.26	1.51	1.70	1.90	2.11	2.40	2.63
	(0.636-0.779)	(0.775-0.949)	(0.982-1.20)	(1.14-1.39)	(1.35-1.66)	(1.52-1.88)	(1.68-2.10)	(1.86-2.34)	(2.09-2.68)	(2.27-2.95)
3-hr	0.515	0.627	0.796	0.928	1.11	1.26	1.42	1.58	1.81	2.00
	(0.463-0.574)	(0.566-0.699)	(0.716-0.888)	(0.832-1.03)	(0.992-1.24)	(1.12-1.40)	(1.25-1.58)	(1.38-1.77)	(1.56-2.03)	(1.70-2.25)
6-hr	0.327	0.397	0.502	0.589	0.713	0.817	0.929	1.05	1.22	1.37
	(0.294-0.367)	(0.357-0.445)	(0.450-0.562)	(0.525-0.657)	(0.630-0.796)	(0.717-0.911)	(0.807-1.04)	(0.902-1.17)	(1.03-1.37)	(1.14-1.55)
12-hr	0.197	0.238	0.304	0.359	0.442	0.514	0.593	0.681	0.812	0.925
	(0.177-0.223)	(0.214-0.270)	(0.271-0.343)	(0.320-0.405)	(0.390-0.497)	(0.449-0.578)	(0.511-0.666)	(0.578-0.767)	(0.676-0.920)	(0.756-1.05)
24-hr	0.114	0.138	0.176	0.208	0.257	0.299	0.345	0.396	0.473	0.539
	(0.104-0.125)	(0.127-0.151)	(0.161-0.193)	(0.190-0.228)	(0.233-0.280)	(0.268-0.326)	(0.307-0.376)	(0.349-0.433)	(0.410-0.518)	(0.461-0.592)
2-day	0.066	0.080	0.102	0.120	0.147	0.170	0.195	0.223	0.263	0.298
	(0.060-0.072)	(0.073-0.088)	(0.093-0.112)	(0.110-0.132)	(0.133-0.161)	(0.153-0.186)	(0.174-0.214)	(0.197-0.244)	(0.229-0.290)	(0.256-0.329)
3-day	0.046	0.056	0.071	0.084	0.102	0.118	0.134	0.152	0.179	0.201
	(0.043-0.051)	(0.052-0.061)	(0.065-0.078)	(0.077-0.092)	(0.093-0.111)	(0.106-0.128)	(0.121-0.146)	(0.136-0.167)	(0.157-0.196)	(0.175-0.221)
4-day	0.037	0.044	0.056	0.066	0.080	0.091	0.104	0.117	0.137	0.153
	(0.034-0.040)	(0.041-0.048)	(0.052-0.061)	(0.060-0.072)	(0.073-0.087)	(0.083-0.099)	(0.094-0.113)	(0.105-0.128)	(0.121-0.149)	(0.134-0.167)
7-day	0.024	0.029	0.037	0.043	0.051	0.058	0.066	0.074	0.086	0.096
	(0.022-0.027)	(0.027-0.032)	(0.034-0.040)	(0.039-0.046)	(0.047-0.056)	(0.053-0.064)	(0.060-0.072)	(0.067-0.081)	(0.076-0.094)	(0.084-0.105)
10-day	0.019	0.023	0.028	0.033	0.039	0.044	0.049	0.055	0.062	0.069
	(0.018-0.021)	(0.021-0.025)	(0.026-0.031)	(0.030-0.036)	(0.036-0.042)	(0.040-0.048)	(0.045-0.053)	(0.049-0.059)	(0.056-0.068)	(0.061-0.075)
20-day	0.013	0.015	0.018	0.021	0.024	0.027	0.030	0.032	0.036	0.039
	(0.012-0.014)	(0.014-0.016)	(0.017-0.020)	(0.020-0.022)	(0.023-0.026)	(0.025-0.029)	(0.027-0.032)	(0.030-0.034)	(0.033-0.038)	(0.035-0.042)
30-day	0.011	0.013	0.015	0.017	0.019	0.021	0.022	0.024	0.026	0.028
	(0.010-0.011)	(0.012-0.013)	(0.014-0.016)	(0.016-0.018)	(0.018-0.020)	(0.019-0.022)	(0.021-0.024)	(0.022-0.025)	(0.024-0.028)	(0.026-0.030)
45-day	0.009	0.011	0.012	0.014	0.015	0.016	0.018	0.019	0.020	0.021
	(0.008-0.009)	(0.010-0.011)	(0.012-0.013)	(0.013-0.014)	(0.014-0.016)	(0.016-0.017)	(0.017-0.019)	(0.018-0.020)	(0.019-0.021)	(0.020-0.023)
60-day	0.008	0.009	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018
	(0.008-0.008)	(0.009-0.010)	(0.010-0.011)	(0.011-0.013)	(0.013-0.014)	(0.013-0.015)	(0.014-0.016)	(0.015-0.017)	(0.016-0.018)	(0.017-0.019)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Basin 1

Input Values	
5.00	R
0.150	Sy
25.00	Kh
27.830	х
45.470	У
9.34	t
10.00	hi(0

0

10

20

30

40

50

60

70

80

90

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

default value is 0.15; max value is 0.2 provided that a lab test data is submitted

Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan

Recharge rate (permeability rate) (in/hr)

Horizontal hydraulic conductivity (in/hr)

1/2 length of basin (x direction, in feet)

1/2 width of basin (y direction, in feet)

Initial thickness of saturated zone (feet)

Duration of infiltration period (hours)

Specific yield, Sy (dimensionless)

Ground-water center of basin in x Mounding, in feet direction, in feet

10.726

10.419

9.456

7.727

5.873

4.298

3.022

2.044 1.334

0.844

Disclaimer

Basin 1 - Modified

R
-
Sy
Кh
х
У
t
hi(0

14.993	h(max)
4.993	∆h(max)
	Distance from

Ground-water center of basin in x Mounding, in feet direction, in feet

4.993

4.886

4.556

3.993

3.395

2.874

2.421

2.030 1.694

1.406

0

10

20

30

40

50

60

70

80

90

Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless)
default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr)
Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
1/2 length of basin (x direction, in feet)
1/2 width of basin (y direction, in feet)
Duration of infiltration period (hours)
Initial thickness of saturated zone (feet)

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Re-Calculate Now

Disclaimer

Basin 2

Input Values	
5.00	R
0.150	Sy
25.00	Kh
115.845	х
13.510	У
3.68	t
10.00	hi(C

Distance from

Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless) default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr) Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan 1/2 length of basin (x direction, in feet) 1/2 width of basin (y direction, in feet) Duration of infiltration period (hours) Initial thickness of saturated zone (feet)

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Ground-water center of basin in x Mounding, in feet direction, in feet

4.861	0	
4.860	10	
4.859	20	
4.856	30	
4.849	40	
4.833	50	
4.799	60	
4.732	70	
4.607	80	
4.378	90	

Disclaimer

Basin 2 - Modified

Input Values	
0.62	R
0.150	Sy
25.00	Kh
115.845	х
13.510	У
29.66	t
10.00	hi(0)
11.989	h(max)

1.989

Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless)
default value is 0.15; max value is 0.2 provided that a lab test data is submitted
Horizontal hydraulic conductivity (in/hr)
Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
1/2 length of basin (x direction, in feet)
1/2 width of basin (y direction, in feet)
Duration of infiltration period (hours)
Initial thickness of saturated zone (feet)

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Ground-water center of basin in x Mounding, in feet direction, in feet

Δh(max)

Distance from

1.989	0	
1.985	10	
1.973	20	
1.953	30	
1.925	40	
1.885	50	
1.834	60	
1.768	70	
1.682	80	
1.572	90	

Disclaimer

Basin B

Input Values	
5.00	R
0.150	Sy
25.00	Kh
106.845	х
6.375	У
6.40	t
10.00	hi(0)

Ground-water center of basin in x Mounding, in feet direction, in feet

3.608	0	
3.605	10	
3.599	20	
3.585	30	
3.561	40	
3.520	50	
3.453	60	
3.345	70	
3.174	80	
2.898	90	

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Re-Calculate Now

Disclaimer

	Cumulative	Cumulative			Cumulative	
Time	Rainfall	Time	Rainfall	Time	Rainfall	
(Minutes)	(Inches)	(Minutes)	(Inches)	(Minutes)	(Inches)	
1	0.00166	41	0.1728	81	1.0906	
2	0.00332	42	0.1796	82	1.0972	
3	0.00498	43	0.1864	83	1.1038	
4	0.00664	44	0.1932	84	1.1104	
5	0.00830	45	0.2000	85	1.1170	
6	0.00996	46	0.2117	86	1.1236	
7	0.01162	47	0.2233	87	1.1302	
8	0.01328	48	0.2350	88	1.1368	
9	0.01494	49	0.2466	89	1.1434	
10	0.01660	50	0.2583	90	1.1500	
11	0.01828	51	0.2783	91	1.1550	
12	0.01996	52	0.2983	92	1.1600	
13	0.02164	53	0.3183	93	1.1650	
14	0.02332	54	0.3383	94	1.1700	
15	0.02500	55	0.3583	95	1.1750	
16	0.03000	56	0.4116	96	1.1800	
17	0.03500	57	0.4650	97	1.1850	
18	0.04000	58	0.5183	98	1.1900	
19	0.04500	59	0.5717	99	1.1950	
20	0.05000	60	0.6250	100	1.2000	
21	0.05500	61	0.6783	101	1.2050	
22	0.06000	62	0.7317	102	1.2100	
23	0.06500	63	0.7850	103	1.2150	
24	0.07000	64	0.8384	104	1.2200	
25	0.07500	65	0.8917	105	1.2250	
26	0.08000	66	0.9117	106	1.2267	
27	0.08500	67	0.9317	107	1.2284	
28	0.09000	68	0.9517	108	1.2300	
29	0.09500	69	0.9717	109	1.2317	
30	0.10000	70	0.9917	110	1.2334	
31	0.10660	71	1.0034	111	1.2351	
32	0.11320	72	1.0150	112	1.2367	
33	0.11980	73	1.0267	113	1.2384	
34	0.12640	74	1.0383	114	1.2400	
35	0.13300	75	1.0500	115	1.2417	
36	0.13960	76	1.0568	116	1.2434	
37	0.14620	77	1.0636	117	1.2450	
38	0.15280	78	1.0704	118	1.2467	
39	0.15940	79	1.0772	119	1.2483	
40	0.16600	80	1.0840	120	1.2500	

 Table 5-2: NJDEP 1.25-Inch/2-Hour Stormwater Runoff

 Water Quality Design Storm Rainfall Distribution

Hydraflow Table of Contents

Hydraflow Hydrographs by Intelisolve v9.25

Watershed Model Schematic 1

2 - Year	
Summary Report	2
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, Existing	
TR-55 Tc Worksheet	
Hydrograph No. 2, SCS Runoff, Prop - Detained1 (Perv)	
TR-55 Tc Worksheet	
Hydrograph No. 3, SCS Runoff, Prop - Detained1 (Imp)	
Hydrograph No. 4, Combine, Prop - Detained1	
Hydrograph No. 5, Reservoir, Route 1	
Pond Report - Basin 1	
Hydrograph No. 6, SCS Runoff, Prop - Detained2 (Perv)	11
TR-55 Tc Worksheet	
Hydrograph No. 7, SCS Runoff, Prop - Detained2 (Imp)	13
Hydrograph No. 8, Combine, Prop - Detained2	14
Hydrograph No. 9, Reservoir, Route 2	15
Pond Report - Basin 2	
Hydrograph No. 10, SCS Runoff, Prop - Bypass (Perv)	17
Hydrograph No. 11, SCS Runoff, Prop - Bypass (Imp)	
Lludragraph No. 10 Camping Dran Dynasa	10

Hydrograph No. 12, Combine, Prop - Bypass19Hydrograph No. 13, Combine, Proposed20Hydrograph No. 14, SCS Runoff, Building B21

10 - Year

Summary Report	22
Hydrograph Reports	23
Hydrograph No. 1, SCS Runoff, Existing	23
Hydrograph No. 2, SCS Runoff, Prop - Detained1 (Perv)	24
Hydrograph No. 3, SCS Runoff, Prop - Detained1 (Imp)	25
Hydrograph No. 4, Combine, Prop - Detained1	26
Hydrograph No. 5, Reservoir, Route 1	27
Hydrograph No. 6, SCS Runoff, Prop - Detained2 (Perv)	28
Hydrograph No. 7, SCS Runoff, Prop - Detained2 (Imp)	29
Hydrograph No. 8, Combine, Prop - Detained2	30
Hydrograph No. 9, Reservoir, Route 2	31
Hydrograph No. 10, SCS Runoff, Prop - Bypass (Perv)	32
Hydrograph No. 11, SCS Runoff, Prop - Bypass (Imp)	33
Hydrograph No. 12, Combine, Prop - Bypass	34
Hydrograph No. 13, Combine, Proposed	35
Hydrograph No. 14, SCS Runoff, Building B	36

100 - Year

Summary Report	37
Hydrograph Reports	38
Hydrograph No. 1, SCS Runoff, Existing	38
Hydrograph No. 2, SCS Runoff, Prop - Detained1 (Perv)	39
Hydrograph No. 3, SCS Runoff, Prop - Detained1 (Imp)	40

Hydrograph No. 4, Combine, Prop - Detained1	41
Hydrograph No. 5, Reservoir, Route 1	42
Hydrograph No. 6, SCS Runoff, Prop - Detained2 (Perv)	43
Hydrograph No. 7, SCS Runoff, Prop - Detained2 (Imp)	44
Hydrograph No. 8, Combine, Prop - Detained2	45
Hydrograph No. 9, Reservoir, Route 2	46
Hydrograph No. 10, SCS Runoff, Prop - Bypass (Perv)	47
Hydrograph No. 11, SCS Runoff, Prop - Bypass (Imp)	48
Hydrograph No. 12, Combine, Prop - Bypass	49
Hydrograph No. 13, Combine, Proposed	50
Hydrograph No. 14, SCS Runoff, Building B	51

Watershed Model Schematic

Hydraflow Hydrographs by Intelisolve v9.25

Project: 21-210-3.gpw

Tuesday, Apr 9, 2024

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	1.723	1	736	9,406				Existing
2	SCS Runoff	0.197	1	733	945				Prop - Detained1 (Perv)
3	SCS Runoff	4.117	1	728	14,655				Prop - Detained1 (Imp)
4	Combine	4.264	1	729	15,600	2, 3			Prop - Detained1
5	Reservoir	0.243	1	825	5,763	4	73.28	11,257	Route 1
6	SCS Runoff	0.567	1	737	2,679				Prop - Detained2 (Perv)
7	SCS Runoff	4.816	1	728	17,146				Prop - Detained2 (Imp)
8	Combine	5.191	1	729	25,588	5, 6, 7			Prop - Detained2
9	Reservoir	0.776	1	782	15,681	8	68.76	12,413	Route 2
10	SCS Runoff	0.438	1	730	1,556				Prop - Bypass (Perv)
11	SCS Runoff	0.028	1	728	101				Prop - Bypass (Imp)
12	Combine	0.465	1	730	1,657	10, 11			Prop - Bypass
13	Combine	0.858	1	776	17,338	9, 12			Proposed
14	SCS Runoff	0.722	1	728	2,569				Building B
21-210-3.gpw				Return P	eriod: 2 Ye	ar	Tuesday, A	pr 9, 2024	

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 1

Existing

= SCS Runoff	Peak discharge	= 1.723 cfs
= 2 yrs	Time to peak	= 12.27 hrs
= 1 min	Hyd. volume	= 9,406 cuft
= 5.225 ac	Curve number	= 61*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 15.20 min
= 3.31 in	Distribution	= Custom
= NOAA_C.cds	Shape factor	= 484
	= SCS Runoff = 2 yrs = 1 min = 5.225 ac = 0.0 % = TR55 = 3.31 in = NOAA_C.cds	SCS RunoffPeak discharge2 yrsTime to peak1 minHyd. volume5.225 acCurve number0.0 %Hydraulic lengthTR55Time of conc. (Tc)3.31 inDistributionNOAA_C.cdsShape factor

* Composite (Area/CN) = [(2.994 x 55) + (2.231 x 70)] / 5.225

Tuesday, Apr 9, 2024

Hyd. No. 1

Existing

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.40 = 100 = 3.31 = 6.00	00 .0	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 13.0	61 +	0.00	+	0.00	=	13.61
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 361 = 5.80 = Unp = 3.89	.00) aved)	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		4 55
Iravel Time (min)	= 1.5	b +	0.00	+	0.00	=	1.55
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	$\begin{array}{rcrr} = & 0.00 \\ = & 0.00 \\ = & 0.00 \\ = & 0.01 \\ = & 0.00 \\ = & 0.0 \end{array}$)) 5)	0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.0) +	0.00	+	0.00	=	0.00
Total Travel Time, Tc							15.20 min

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 2

Prop - Detained1 (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.197 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.22 hrs
Time interval	= 1 min	Hyd. volume	= 945 cuft
Drainage area	= 0.540 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.20 min
Total precip.	= 3.31 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.020 x 74)] / 0.540

Tuesday, Apr 9, 2024

Prop - Detained1 (Perv)

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.31 = 3.30		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 11.48	+	0.00	+	0.00	=	11.48
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 167.00 = 5.10 = Unpavec = 3.64	1	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00	_	0.76
Travel Time (min)	= 0.76	+	0.00	+	0.00	=	0.76
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	$\begin{array}{r} = \ 0.00 \\ = \ 0.00 \\ = \ 0.015 \\ = \ 0.00 \\ = \ 0.00 \\ = \ 0.0 \end{array}$		0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc					12.20 min		

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 3

Prop - Detained1 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.117 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 14,655 cuft
Drainage area	= 1.312 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.31 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Tuesday, Apr 9, 2024

7

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 4

Prop - Detained1

Hydrograph type	= Combine	Peak discharge	= 4.264 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 15,600 cuft
Inflow hyds.	= 2, 3	Contrib. drain. area	= 1.852 ac

8

Tuesday, Apr 9, 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 5

Route 1

Hydrograph type	= Reservoir	Peak discharge	= 0.243 cfs
Storm frequency	= 2 yrs	Time to peak	= 13.75 hrs
Time interval	= 1 min	Hyd. volume	= 5,763 cuft
Inflow hyd. No.	= 4 - Prop - Detained1	Max. Elevation	= 73.28 ft
Reservoir name	= Basin 1	Max. Storage	= 11,257 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.25

Pond No. 1 - Basin 1

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 71.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	71.00	4,550	0	0	
1.00	72.00	4,870	4,710	4,710	
3.00	74.00	5,367	10,237	14,947	
5.00	76.00	5,675	11,042	25,989	
Culvert / Or	ifice Structures		Weir Structure	es	

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	7.00	0.00	0.00	Crest Len (ft)	= 16.00	4.00	0.00	0.00
Span (in)	= 15.00	7.00	0.00	0.00	Crest El. (ft)	= 75.00	74.25	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.20	3.20	3.33	3.33
Invert El. (ft)	= 72.50	73.00	0.00	0.00	Weir Type	= Riser	Rect		
Length (ft)	= 43.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 5.00	0.00	0.00	n/a	-				
N-Value	= .012	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	vWet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

-	-	-											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	71.00	0.00	0.00			0.00	0.00					0.000
1.00	4,710	72.00	0.00	0.00			0.00	0.00					0.000
3.00	14,947	74.00	1.09 ic	1.08 ic			0.00	0.00					1.083
5.00	25,989	76.00	10.01 ic	0.08 ic			6.73 s	3.14 s					9.944

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 6

Prop - Detained2 (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.567 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.28 hrs
Time interval	= 1 min	Hyd. volume	= 2,679 cuft
Drainage area	= 0.990 ac	Curve number	= 67*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 3.31 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.470 x 74)] / 0.990

Hyd. No. 6

Prop - Detained2 (Perv)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>		
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.31 = 2.80		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00				
Travel Time (min)	= 12.26	+	0.00	+	0.00	=	12.26		
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Unpave = 0.00	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00				
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00		
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 2.50 = 5.39 = 2.90 = 0.240 = 0.63 = 232.0		1.23 3.14 1.20 0.012 7.26 410.0		0.00 0.00 0.015 0.00 0.0				
Travel Time (min)	= 6.12	+	0.94	+	0.00	=	7.06		
Total Travel Time, Tc									

Hydraflow Hydrographs by Intelisolve v9.25

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 7

Prop - Detained2 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.816 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 17,146 cuft
Drainage area	= 1.535 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.31 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

13

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 8

Prop - Detained2

Hydrograph type	= Combine	Peak discharge	= 5.191 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 25,588 cuft
Inflow hyds.	= 5, 6, 7	Contrib. drain. area	= 2.525 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 9

Route 2

= Reservoir	Peak discharge	= 0.776 cfs
= 2 yrs	Time to peak	= 13.03 hrs
= 1 min	Hyd. volume	= 15,681 cuft
= 8 - Prop - Detained2	Max. Elevation	= 68.76 ft
= Basin 2	Max. Storage	= 12,413 cuft
	 Reservoir 2 yrs 1 min 8 - Prop - Detained2 Basin 2 	= ReservoirPeak discharge= 2 yrsTime to peak= 1 minHyd. volume= 8 - Prop - Detained2Max. Elevation= Basin 2Max. Storage

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.25

Pond No. 2 - Basin 2

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 67.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	67.00	6,921	0	0	
2.00	69.00	7,221	14,142	14,142	
4.00	71.00	7,521	14,742	28,884	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	Inactive	Inactive	0.00	Crest Len (ft)	= 16.00	1.80	0.00	0.00
Span (in)	= 18.00	21.00	15.00	0.00	Crest El. (ft)	= 70.33	68.50	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.20	3.20	3.33	3.33
Invert El. (ft)	= 67.00	68.50	68.50	0.00	Weir Type	= Riser	Rect		
Length (ft)	= 26.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 4.00	0.00	0.00	n/a	-				
N-Value	= .012	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

-	-	-											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	67.00	0.00	0.00	0.00		0.00	0.00					0.000
2.00	14,142	69.00	2.04 ic	0.00	0.00		0.00	2.04					2.036
4.00	28,884	71.00	15.26 ic	0.00	0.00		10.23 s	5.02 s					15.25

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 10

Prop - Bypass (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.438 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 1 min	Hyd. volume	= 1,556 cuft
Drainage area	= 0.613 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.31 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.380 x 61) + (0.233 x 74)] / 0.613

17

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 11

Prop - Bypass (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.028 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 101 cuft
Drainage area	= 0.009 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.31 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 12

Prop - Bypass

Hydrograph type	= Combine	Peak discharge	= 0.465 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 1 min	Hyd. volume	= 1,657 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area	= 0.622 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 13

Proposed

Hydrograph type	= Combine	Peak discharge	= 0.858 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.93 hrs
Time interval	= 1 min	Hyd. volume	= 17,338 cuft
Inflow hyds.	= 9, 12	Contrib. drain. area	= 0.000 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 14

Building B

Hydrograph type	= SCS Runoff	Peak discharge	= 0.722 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 2,569 cuft
Drainage area	= 0.230 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.31 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	6.431	1	734	26,407				Existing
2	SCS Runoff	0.722	1	732	2,653				Prop - Detained1 (Perv)
3	SCS Runoff	6.273	1	728	22,732				Prop - Detained1 (Imp)
4	Combine	6.923	1	729	25,386	2, 3			Prop - Detained1
5	Reservoir	1.109	1	761	15,549	4	74.04	15,145	Route 1
6	SCS Runoff	1.541	1	736	6,505				Prop - Detained2 (Perv)
7	SCS Runoff	7.339	1	728	26,596				Prop - Detained2 (Imp)
8	Combine	8.873	1	729	48,650	5, 6, 7			Prop - Detained2
9	Reservoir	4.266	1	744	38,743	8	69.32	16,468	Route 2
10	SCS Runoff	1.215	1	729	3,860				Prop - Bypass (Perv)
11	SCS Runoff	0.043	1	728	156				Prop - Bypass (Imp)
12	Combine	1.257	1	729	4,016	10, 11			Prop - Bypass
13	Combine	4.717	1	742	42,758	9, 12			Proposed
14	SCS Runoff	1.100	1	728	3,985				Building B
21-2	210-3.gpw				Return P	eriod: 10 Y	ear	Tuesday, A	pr 9, 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 1

Existing

Hydrograph type :	= SCS Runoff	Peak discharge	= 6.431 cfs
Storm frequency :	= 10 yrs	Time to peak	= 12.23 hrs
Time interval :	= 1 min	Hyd. volume	= 26,407 cuft
Drainage area :	= 5.225 ac	Curve number	= 61*
Basin Šlope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method :	= TR55	Time of conc. (Tc)	= 15.20 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration :	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(2.994 x 55) + (2.231 x 70)] / 5.225

23

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 2

Prop - Detained1 (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.722 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.20 hrs
Time interval	= 1 min	Hyd. volume	= 2,653 cuft
Drainage area	= 0.540 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.20 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.020 x 74)] / 0.540

24

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 3

Prop - Detained1 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.273 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 22,732 cuft
Drainage area	= 1.312 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 4

Prop - Detained1

Hydrograph type	= Combine	Peak discharge	= 6.923 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 25,386 cuft
Inflow hyds.	= 2, 3	Contrib. drain. area	= 1.852 ac

Tuesday, Apr 9, 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 5

Route 1

Hydrograph type	= Reservoir	Peak discharge	= 1.109 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.68 hrs
Time interval	= 1 min	Hyd. volume	= 15,549 cuft
Inflow hyd. No.	= 4 - Prop - Detained1	Max. Elevation	= 74.04 ft
Reservoir name	= Basin 1	Max. Storage	= 15,145 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 6

Prop - Detained2 (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.541 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 1 min	Hyd. volume	= 6,505 cuft
Drainage area	= 0.990 ac	Curve number	= 67*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.470 x 74)] / 0.990

Tuesday, Apr 9, 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 7

Prop - Detained2 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 7.339 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 26,596 cuft
Drainage area	= 1.535 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 8

Prop - Detained2

Hydrograph type	= Combine	Peak discharge	= 8.873 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 48,650 cuft
Inflow hyds.	= 5, 6, 7	Contrib. drain. area	= 2.525 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 9

Route 2

6 cfs
0 hrs
43 cuft
2 ft
68 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 10

Prop - Bypass (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.215 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 3,860 cuft
Drainage area	= 0.613 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.380 x 61) + (0.233 x 74)] / 0.613

Tuesday, Apr 9, 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 11

Prop - Bypass (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.043 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 156 cuft
Drainage area	= 0.009 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 12

Prop - Bypass

Hydrograph type	= Combine	Peak discharge = 1.257 cfs	
Storm frequency	= 10 yrs	Time to peak = 12.15 hrs	
Time interval	= 1 min	Hyd. volume = 4,016 cuft	i
Inflow hyds.	= 10, 11	Contrib. drain. area = 0.622 ac	
Time interval Inflow hyds.	= 1 min = 10, 11	Hyd. volume = 4,016 cuft Contrib. drain. area = 0.622 ac	

34

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 13

Proposed

Hydrograph type	= Combine	Peak discharge	= 4.717 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.37 hrs
Time interval	= 1 min	Hyd. volume	= 42,758 cuft
Inflow hyds.	= 9, 12	Contrib. drain. area	= 0.000 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 14

Building B

Hydrograph type	= SCS Runoff	Peak discharge	= 1.100 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 3,985 cuft
Drainage area	= 0.230 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	18.54	1	733	71,019				Existing
2	SCS Runoff	2.070	1	731	7,136				Prop - Detained1 (Perv)
3	SCS Runoff	10.47	1	728	38,529				Prop - Detained1 (Imp)
4	Combine	12.42	1	729	45,665	2, 3			Prop - Detained1
5	Reservoir	7.379	1	736	35,828	4	75.00	20,471	Route 1
6	SCS Runoff	3.846	1	735	15,800				Prop - Detained2 (Perv)
7	SCS Runoff	12.25	1	728	45,078				Prop - Detained2 (Imp)
8	Combine	21.41	1	730	96,706	5, 6, 7			Prop - Detained2
9	Reservoir	13.65	1	742	86,799	8	70.57	25,696	Route 2
10	SCS Runoff	3.068	1	729	9,523				Prop - Bypass (Perv)
11	SCS Runoff	0.072	1	728	264				Prop - Bypass (Imp)
12	Combine	3.139	1	729	9,787	10, 11			Prop - Bypass
13	Combine	14.77	1	740	96,586	9, 12			Proposed
14	SCS Runoff	1.835	1	728	6,754				Building B
21-2	210-3.gpw				Return P	eriod: 100	Year	Tuesday, A	pr 9, 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 1

Existing

= SCS Runoff	Peak discharge	= 18.54 cfs
= 100 yrs	Time to peak	= 12.22 hrs
= 1 min	Hyd. volume	= 71,019 cuft
= 5.225 ac	Curve number	= 61*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 15.20 min
= 8.33 in	Distribution	= Custom
= NOAA_C.cds	Shape factor	= 484
	= SCS Runoff = 100 yrs = 1 min = 5.225 ac = 0.0 % = TR55 = 8.33 in = NOAA_C.cds	= SCS RunoffPeak discharge= 100 yrsTime to peak= 1 minHyd. volume= 5.225 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 8.33 inDistribution= NOAA_C.cdsShape factor

* Composite (Area/CN) = [(2.994 x 55) + (2.231 x 70)] / 5.225

38

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 2

Prop - Detained1 (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.070 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.18 hrs
Time interval	= 1 min	Hyd. volume	= 7,136 cuft
Drainage area	= 0.540 ac	Curve number	= 61*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.20 min
Total precip.	= 8.33 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.020 x 74)] / 0.540

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 3

Prop - Detained1 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 10.47 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 38,529 cuft
Drainage area	= 1.312 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.33 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Tuesday, Apr 9, 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 4

Prop - Detained1

Hydrograph type	= Combine	Peak discharge	= 12.42 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 45,665 cuft
Inflow hyds.	= 2, 3	Contrib. drain. area	= 1.852 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 5

Route 1

79 cfs
27 hrs
,828 cuft
.00 ft
,471 cuft
, (, (

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 6

Prop - Detained2 (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.846 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.25 hrs
Time interval	= 1 min	Hyd. volume	= 15,800 cuft
Drainage area	= 0.990 ac	Curve number	= 67*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 8.33 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.470 x 74)] / 0.990

43

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 7

Prop - Detained2 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 12.25 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 45,078 cuft
Drainage area	= 1.535 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.33 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 8

Prop - Detained2

Hydrograph type =	- Combine	Peak discharge	= 21.41 cfs
Storm frequency =	= 100 yrs	Time to peak	= 12.17 hrs
Time interval =	= 1 min	Hyd. volume	= 96,706 cuft
Inflow hyds. =	= 5, 6, 7	Contrib. drain. area	= 2.525 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 9

Route 2

Hydrograph type	= Reservoir	Peak discharge	= 13.65 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.37 hrs
Time interval	= 1 min	Hyd. volume	= 86,799 cuft
Inflow hyd. No.	= 8 - Prop - Detained2	Max. Elevation	= 70.57 ft
Reservoir name	= Basin 2	Max. Storage	= 25,696 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 10

Prop - Bypass (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.068 cfs
Storm frequency :	= 100 yrs	Time to peak	= 12.15 hrs
Time interval	= 1 min	Hyd. volume	= 9,523 cuft
Drainage area	= 0.613 ac	Curve number	= 66*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method :	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.33 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.380 x 61) + (0.233 x 74)] / 0.613

47

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 11

Prop - Bypass (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.072 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 264 cuft
Drainage area	= 0.009 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.33 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 12

Prop - Bypass

Hydrograph type	= Combine	Peak discharge = 3	3.139 cfs
Storm frequency	= 100 yrs	Time to peak = 1	12.15 hrs
Time interval	= 1 min	Hyd. volume = 9	9,787 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = ().622 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 13

Proposed

Hydrograph type	= Combine	Peak discharge	= 14.77 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 1 min	Hyd. volume	= 96,586 cuft
Inflow hyds.	= 9, 12	Contrib. drain. area	= 0.000 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 14

Building B

Hydrograph type	= SCS Runoff	Peak discharge	= 1.835 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 6,754 cuft
Drainage area	= 0.230 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.33 in	Distribution	= Custom
Storm duration	= NOAA_C.cds	Shape factor	= 484

Hydraflow Table of Contents

Hydraflow Hydrographs by Intelisolve v9.25

1 -	Year
-----	------

Summary Report	52
Hydrograph Reports	53
Hydrograph No. 1, SCS Runoff, Prop - Treated 1 (Perv)	53
Hydrograph No. 2, SCS Runoff, Prop - Treated 1 (Imp)	54
Hydrograph No. 3, Combine, Prop - Treated 1	55
Hydrograph No. 4, Reservoir, Route 1	56
Hydrograph No. 5, SCS Runoff, Prop - Treated 2 (Perv)	57
Hydrograph No. 6, SCS Runoff, Prop - Treated 2 (Imp)	58
Hydrograph No. 7, Combine, Prop - Treated 2	59
Hydrograph No. 8, Reservoir, Route 2	60

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.000	1	n/a	0				Prop - Treated 1 (Perv)
2	SCS Runoff	3.588	1	67	4,927				Prop - Treated 1 (Imp)
3	Combine	3.588	1	67	4,927	1, 2			Prop - Treated 1
4	Reservoir	0.000	1	n/a	0	3	72.04	4,927	Route 1
5	SCS Runoff	0.022	1	109	49				Prop - Treated 2 (Perv)
6	SCS Runoff	4.198	1	67	5,765				Prop - Treated 2 (Imp)
7	Combine	4.198	1	67	5,813	4, 5, 6			Prop - Treated 2
8	Reservoir	0.000	1	n/a	0	7	67.82	5,813	Route 2
21-	210-wa3 gpw				Return P	eriod: 1 Ye	ar	Tuesday. A	pr 9. 2024

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 1

Prop - Treated 1 (Perv)

Hydrograph type =	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency :	= 1 yrs	Time to peak	= n/a
Time interval :	= 1 min	Hyd. volume	= 0 cuft
Drainage area :	= 0.540 ac	Curve number	= 61*
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method :	= TR55	Time of conc. (Tc)	= 12.20 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= NJWaterQuality.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.020 x 74)] / 0.540

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 2

Prop - Treated 1 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.588 cfs
Storm frequency	= 1 yrs	Time to peak	= 1.12 hrs
Time interval	= 1 min	Hyd. volume	= 4,927 cuft
Drainage area	= 1.312 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= NJWaterQuality.cds	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 3

Prop - Treated 1

Hydrograph type	= Combine	Peak discharge	= 3.588 cfs
Storm frequency	= 1 yrs	Time to peak	= 1.12 hrs
Time interval	= 1 min	Hyd. volume	= 4,927 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.852 ac

55

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 4

Route 1

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 3 - Prop - Treated 1	Max. Elevation	= 72.04 ft
Reservoir name	= Basin 1	Max. Storage	= 4,927 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 5

Prop - Treated 2 (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.022 cfs
Storm frequency	= 1 yrs	Time to peak	= 1.82 hrs
Time interval	= 1 min	Hyd. volume	= 49 cuft
Drainage area	= 0.990 ac	Curve number	= 67*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method :	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= NJWaterQuality.cds	Shape factor	= 484

* Composite (Area/CN) = [(0.520 x 61) + (0.470 x 74)] / 0.990

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 6

Prop - Treated 2 (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.198 cfs
Storm frequency	= 1 yrs	Time to peak	= 1.12 hrs
Time interval	= 1 min	Hyd. volume	= 5,765 cuft
Drainage area	= 1.535 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= NJWaterQuality.cds	Shape factor	= 484

58

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 7

Prop - Treated 2

Hydrograph type	= Combine	Peak discharge	= 4.198 cfs
Storm frequency	= 1 yrs	Time to peak	= 1.12 hrs
Time interval	= 1 min	Hyd. volume	= 5,813 cuft
Inflow hyds.	= 4, 5, 6	Contrib. drain. area	= 2.525 ac

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 8

Route 2

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 7 - Prop - Treated 2	Max. Elevation	= 67.82 ft
Reservoir name	= Basin 2	Max. Storage	= 5,813 cuft

Storage Indication method used.

National Cooperative Soil Survey

Conservation Service

Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
FamA	Fallsington sandy loams, 0 to 2 percent slopes, northern coastal plain	C/D	2.1	26.3%
MbpB	Matapeake loam, 2 to 5 percent slopes	В	1.0	12.6%
MbpC2	Matapeake loam, 5 to 10 percent slopes, eroded	В	1.0	12.9%
МВҮВ	Mattapex and Bertie loams, 0 to 5 percent slopes	C	0.5	6.1%
OthA	Othello silt loams, 0 to 2 percent slopes, northern coastal plain	C/D	0.3	4.1%
PHG	Pits, sand and gravel		0.9	11.9%
PortA	Portsmouth variant silt loam, 0 to 2 percent slopes	B/D	1.6	19.9%
SacB	Sassafras sandy loam, 2 to 5 percent slopes, Northern Coastal Plain	В	0.1	1.8%
SacC	Sassafras sandy loam, 5 to 10 percent slopes, Northern Coastal Plain	В	0.0	0.0%
SadB	Sassafras gravelly sandy loam, 2 to 5 percent slopes	В	0.3	4.3%
Totals for Area of Interest			7.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Δ A Σ 4 Ш Ŷ 4 Ш Ċ DRAINA EXISTING Σ

Δ Ś \triangleleft Ш Ŷ \triangleleft Ш വ \triangleleft N V V മ് Ш S Ω \bigcirc Ц Ц N Σ \bigcap

Δ Z Σ AREA Ш Ċ DRAINA Ш Ζ DM3: